skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yadav, Om Prakash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modeling corrosion growth for complex systems such as the oil refinery system is a major challenge since the corrosion process of oil and gas pipelines are inherently stochastic and depends on many factors including exposures to environmental conditions, operating conditions, and electrochemical reactions. Moreover, the number of sensors is usually limited, and sensor data are incomplete and scattering, which hinders the capability of capturing the corrosion growth behaviors. Therefore, this paper proposes Multi-sensor Corrosion Growth Model with Latent Variables to predict the corrosion growth process in oil refinery piping. The proposed model is a combination of the hierarchical clustering algorithm and the vector autoregression (VAR) model. The clustering algorithm aims to find the hidden (i.e., latent) data clusters of the measured time series data, from which the time series from the same cluster will be included in the VAR model to predict the corrosion depth from multiple sensors. The model can capture the relationship between sensor time series data and identify latent variables. A real case study of an oil refinery system, in which in-line inspection (ILI) data were collected, was utilized to validate model. Regarding corrosion growth prediction, the paper compared the prediction accuracy of VAR model with other three forms of power law model, which is widely accepted to expect the time-dependent depth of corrosion such as power function (PF), PF with initiation time of corrosion (PFIT), and PF with initiation time of corrosion and covariates (PFCOV). The results showed that VAR model has the lowest prediction error based on the mean absolute percentage error (MAPE) evaluation for test data. Finally, the proposed model is believed to be useful for dealing with a complex system that has a variety of corrosion growth behaviors, such as the oil refinery system, as well as it can be applied in other real-time applications. 
    more » « less